12 research outputs found

    Mimicking tricks from nature with sensory organic-inorganic hybrid materials

    Full text link
    Design strategies for (bio)chemical systems that are inspired by nature's accomplishments in system design and operation on various levels of complexity are increasingly gaining in importance. Within the broad field of biomimetic chemistry, this article highlights various attempts toward improved and sophisticated sensory materials that rely on the combination of supramolecular (bio)chemical recognition principles and nanoscopic solid structures. Examples range from more established concepts such as hybrid sensing ensembles with improved sensitivity and selectivity or for target analytes for which selectivity is hard to achieve by conventional methods, which were often inspired by protein binding pockets or ion channels in membranes, to very recent approaches relying on target-gated amplified signalling with functionalised mesoporous inorganic supports and the integration of native biological sensory species such as transmembrane proteins in spherically supported bilayer membranes. Besides obvious mimicry of recognition-based processes, selected approaches toward chemical transduction junctions utilizing artificially organized synapses, hybrid ensembles for improved antibody generation and uniquely colour changing systems are discussed. All of these strategies open up exciting new prospects for the development of sensing concepts and sensory devices at the interface of nanotechnology, smart materials and supramolecular (bio)chemistry. © 2011 The Royal Society of Chemistry.Martínez Mañez, R.; Sancenón Galarza, F.; Biyikal, M.; Hecht, M.; Rurack, K. (2011). Mimicking tricks from nature with sensory organic-inorganic hybrid materials. Journal of Materials Chemistry. 21(34):12588-12604. doi:10.1039/c1jm11210dS12588126042134Ma, M. (2007). Encoding Olfactory Signals via Multiple Chemosensory Systems. Critical Reviews in Biochemistry and Molecular Biology, 42(6), 463-480. doi:10.1080/10409230701693359Leinders-Zufall, T., Lane, A. P., Puche, A. C., Ma, W., Novotny, M. V., Shipley, M. T., & Zufall, F. (2000). Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature, 405(6788), 792-796. doi:10.1038/35015572Serezani, C. H., Ballinger, M. N., Aronoff, D. M., & Peters-Golden, M. (2008). Cyclic AMP. American Journal of Respiratory Cell and Molecular Biology, 39(2), 127-132. doi:10.1165/rcmb.2008-0091trShimada, T. (2006). Xenobiotic-Metabolizing Enzymes Involved in Activation and Detoxification of Carcinogenic Polycyclic Aromatic Hydrocarbons. Drug Metabolism and Pharmacokinetics, 21(4), 257-276. doi:10.2133/dmpk.21.257Duncan, M. C., Ho, D. G., Huang, J., Jung, M. E., & Payne, G. S. (2007). Composite synthetic lethal identification of membrane traffic inhibitors. Proceedings of the National Academy of Sciences, 104(15), 6235-6240. doi:10.1073/pnas.0607773104Helmreich, E. J. M. (2002). Environmental influences on signal transduction through membranes: a retrospective mini-review. Biophysical Chemistry, 100(1-3), 519-534. doi:10.1016/s0301-4622(02)00303-4Anslyn, E. V. (2007). Supramolecular Analytical Chemistry. The Journal of Organic Chemistry, 72(3), 687-699. doi:10.1021/jo0617971Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences, 44(2), 98-104. doi:10.1073/pnas.44.2.98Hammes, G. G. (2002). Multiple Conformational Changes in Enzyme Catalysis†. Biochemistry, 41(26), 8221-8228. doi:10.1021/bi0260839Lin, V. S.-Y., Lai, C.-Y., Huang, J., Song, S.-A., & Xu, S. (2001). Molecular Recognition Inside of Multifunctionalized Mesoporous Silicas:  Toward Selective Fluorescence Detection of Dopamine and Glucosamine. Journal of the American Chemical Society, 123(46), 11510-11511. doi:10.1021/ja016223mRadu, D. R., Lai, C.-Y., Wiench, J. W., Pruski, M., & Lin, V. S.-Y. (2004). Gatekeeping Layer Effect:  A Poly(lactic acid)-coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters. Journal of the American Chemical Society, 126(6), 1640-1641. doi:10.1021/ja038222vDescalzo, A. B., Rurack, K., Weisshoff, H., Martínez-Máñez, R., Marcos, M. D., Amorós, P., … Soto, J. (2005). Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 127(1), 184-200. doi:10.1021/ja045683nComes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., … Beltrán, D. (2004). Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica. Advanced Materials, 16(20), 1783-1786. doi:10.1002/adma.200400143(s. f.). doi:10.1021/ol052298García-Acosta, B., Comes, M., Bricks, J. L., Kudinova, M. A., Kurdyukov, V. V., Tolmachev, A. I., … Amorós, P. (2006). Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chem. Commun., (21), 2239-2241. doi:10.1039/b602497aComes, M., Marcos, M. D., Martínez-Máñez, R., Millán, M. C., Ros-Lis, J. V., Sancenón, F., … Villaescusa, L. A. (2006). Anchoring Dyes into Multidimensional Large-Pore Zeolites: A Prospective Use as Chromogenic Sensing Materials. Chemistry - A European Journal, 12(8), 2162-2170. doi:10.1002/chem.200500932Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie International Edition, 44(19), 2918-2922. doi:10.1002/anie.200461511Comes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., & Amorós, P. (2008). Hybrid materials with nanoscopic anion-binding pockets for the colorimetric sensing of phosphate in water using displacement assays. Chemical Communications, (31), 3639. doi:10.1039/b804396eComes, M., Aznar, E., Moragues, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2009). Mesoporous Hybrid Materials Containing Nanoscopic «Binding Pockets» for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 15(36), 9024-9033. doi:10.1002/chem.200900890Vašák, M. (2005). Advances in metallothionein structure and functions. Journal of Trace Elements in Medicine and Biology, 19(1), 13-17. doi:10.1016/j.jtemb.2005.03.003Slocik, J. M., & Wright, D. W. (2003). Biomimetic Mineralization of Noble Metal Nanoclusters. Biomacromolecules, 4(5), 1135-1141. doi:10.1021/bm034003qLee, J.-W., & Helmann, J. D. (2007). Functional specialization within the Fur family of metalloregulators. BioMetals, 20(3-4), 485-499. doi:10.1007/s10534-006-9070-7Lee, M. H., Lee, S. J., Jung, J. H., Lim, H., & Kim, J. S. (2007). Luminophore-immobilized mesoporous silica for selective Hg2+ sensing. Tetrahedron, 63(48), 12087-12092. doi:10.1016/j.tet.2007.08.113Song, C., Zhang, X., Jia, C., Zhou, P., Quan, X., & Duan, C. (2010). Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in Aqueous Media. Talanta, 81(1-2), 643-649. doi:10.1016/j.talanta.2009.12.047Métivier, R., Leray, I., Lebeau, B., & Valeur, B. (2005). A mesoporous silica functionalized by a covalently bound calixarene-based fluoroionophore for selective optical sensing of mercury(ii) in water. Journal of Materials Chemistry, 15(27-28), 2965. doi:10.1039/b501897hLee, S. J., Lee, J.-E., Seo, J., Jeong, I. Y., Lee, S. S., & Jung, J. H. (2007). Optical Sensor Based on Nanomaterial for the Selective Detection of Toxic Metal Ions. Advanced Functional Materials, 17(17), 3441-3446. doi:10.1002/adfm.200601202Palomares, E., Vilar, R., & Durrant, J. R. (2004). Heterogeneous colorimetric sensor for mercuric saltsElectronic supplementary information (ESI) available: Materials and methods. See http://www.rsc.org/suppdata/cc/b3/b314138a/. Chemical Communications, (4), 362. doi:10.1039/b314138aWang, Y., Li, B., Zhang, L., Liu, L., Zuo, Q., & Li, P. (2010). A highly selective regenerable optical sensor for detection of mercury(ii) ion in water using organic–inorganic hybrid nanomaterials containing pyrene. New Journal of Chemistry, 34(9), 1946. doi:10.1039/c0nj00039fLi, L.-L., Sun, H., Fang, C.-J., Xu, J., Jin, J.-Y., & Yan, C.-H. (2007). Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+) in water. Journal of Materials Chemistry, 17(42), 4492. doi:10.1039/b708857dZhang, H., Zhang, P., Ye, K., Sun, Y., Jiang, S., Wang, Y., & Pang, W. (2006). Mesoporous material grafted with luminescent molecules for the design of selective metal ion chemosensor. Journal of Luminescence, 117(1), 68-74. doi:10.1016/j.jlumin.2005.04.009Gao, L., Wang, J. Q., Huang, L., Fan, X. X., Zhu, J. H., Wang, Y., & Zou, Z. G. (2007). Novel Inorganic−Organic Hybrid Fluorescence Chemosensor Derived from SBA-15 for Copper Cation. Inorganic Chemistry, 46(24), 10287-10293. doi:10.1021/ic7008732Wang, J.-Q., Huang, L., Xue, M., Wang, Y., Gao, L., Zhu, J. H., & Zou, Z. (2008). Architecture of a Hybrid Mesoporous Chemosensor for Fe3+ by Covalent Coupling Bis-Schiff Base PMBA onto the CPTES-Functionalized SBA-15. The Journal of Physical Chemistry C, 112(13), 5014-5022. doi:10.1021/jp7099948Gao, L., Wang, Y., Wang, J., Huang, L., Shi, L., Fan, X., … Li, Z. (2006). A Novel ZnII-Sensitive Fluorescent Chemosensor Assembled within Aminopropyl-Functionalized Mesoporous SBA-15. Inorganic Chemistry, 45(17), 6844-6850. doi:10.1021/ic0516562Balaji, T., Sasidharan, M., & Matsunaga, H. (2005). Naked eye detection of cadmium using inorganic–organic hybrid mesoporous material. Analytical and Bioanalytical Chemistry, 384(2), 488-494. doi:10.1007/s00216-005-0187-2Balaji, T., El-Safty, S. A., Matsunaga, H., Hanaoka, T., & Mizukami, F. (2006). Optical Sensors Based on Nanostructured Cage Materials for the Detection of Toxic Metal Ions. Angewandte Chemie International Edition, 45(43), 7202-7208. doi:10.1002/anie.200602453El-Safty, S. A., Ismail, A. A., Matsunaga, H., & Mizukami, F. (2007). Optical Nanosensor Design with Uniform Pore Geometry and Large Particle Morphology. Chemistry - A European Journal, 13(33), 9245-9255. doi:10.1002/chem.200700499El-Safty, S. A., Ismail, A. A., Matsunaga, H., Hanaoka, T., & Mizukami, F. (2008). Optical Nanoscale Pool-on-Surface Design for Control Sensing Recognition of Multiple Cations. Advanced Functional Materials, 18(10), 1485-1500. doi:10.1002/adfm.200701059Ros-Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez-Máñez, R., … Rurack, K. (2008). A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption. Chemistry - A European Journal, 14(27), 8267-8278. doi:10.1002/chem.200800632Lee, S. J., Bae, D. R., Han, W. S., Lee, S. S., & Jung, J. H. (2008). Different Morphological Organic–Inorganic Hybrid Nanomaterials as Fluorescent Chemosensors and Adsorbents for CuII Ions. European Journal of Inorganic Chemistry, 2008(10), 1559-1564. doi:10.1002/ejic.200701073Lee, H. Y., Bae, D. R., Park, J. C., Song, H., Han, W. S., & Jung, J. H. (2009). A Selective Fluoroionophore Based on BODIPY-functionalized Magnetic Silica Nanoparticles: Removal of Pb2+ from Human Blood. Angewandte Chemie International Edition, 48(7), 1239-1243. doi:10.1002/anie.200804714Haupt, K., & Mosbach, K. (2000). Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chemical Reviews, 100(7), 2495-2504. doi:10.1021/cr990099wWulff, G. (2002). Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chemical Reviews, 102(1), 1-28. doi:10.1021/cr980039aSellergren, B. (1997). Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. TrAC Trends in Analytical Chemistry, 16(6), 310-320. doi:10.1016/s0165-9936(97)00027-7D�az-Garc�a, M. E., & La�n�o, R. B. (2004). Molecular Imprinting in Sol-Gel Materials: Recent Developments and Applications. Microchimica Acta, 149(1-2), 19-36. doi:10.1007/s00604-004-0274-7Bossi, A., Bonini, F., Turner, A. P. F., & Piletsky, S. A. (2007). Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosensors and Bioelectronics, 22(6), 1131-1137. doi:10.1016/j.bios.2006.06.023Nicholls, I. A., & Rosengren, J. P. (2001). Bioseparation, 10(6), 301-305. doi:10.1023/a:1021541631063Chang, Y.-S., Ko, T.-H., Hsu, T.-J., & Syu, M.-J. (2009). Synthesis of an Imprinted Hybrid Organic−Inorganic Polymeric Sol−Gel Matrix Toward the Specific Binding and Isotherm Kinetics Investigation of Creatinine. Analytical Chemistry, 81(6), 2098-2105. doi:10.1021/ac802168wBass, J. D., & Katz, A. (2003). Thermolytic Synthesis of Imprinted Amines in Bulk Silica. Chemistry of Materials, 15(14), 2757-2763. doi:10.1021/cm021822tCarlson, C. A., Lloyd, J. A., Dean, S. L., Walker, N. R., & Edmiston, P. L. (2006). Sensor for Fluorene Based on the Incorporation of an Environmentally Sensitive Fluorophore Proximal to a Molecularly Imprinted Binding Site. Analytical Chemistry, 78(11), 3537-3542. doi:10.1021/ac051375bShughart, E. L., Ahsan, K., Detty, M. R., & Bright, F. V. (2006). Site Selectively Templated and Tagged Xerogels for Chemical Sensors. Analytical Chemistry, 78(9), 3165-3170. doi:10.1021/ac060113mTrammell, S. A., Zeinali, M., Melde, B. J., Charles, P. T., Velez, F. L., Dinderman, M. A., … Markowitz, M. A. (2008). Nanoporous Organosilicas as Preconcentration Materials for the Electrochemical Detection of Trinitrotoluene. Analytical Chemistry, 80(12), 4627-4633. doi:10.1021/ac702263tMakote, R., & Collinson, M. M. (1998). Template Recognition in Inorganic−Organic Hybrid Films Prepared by the Sol−Gel Process. Chemistry of Materials, 10(9), 2440-2445. doi:10.1021/cm9801136Makote, R., & Collinson, M. M. (1998). Dopamine recognition in templated silicate films. Chemical Communications, (3), 425-426. doi:10.1039/a705536fFireman-Shoresh, S., Avnir, D., & Marx, S. (2003). General Method for Chiral Imprinting of Sol−Gel Thin Films Exhibiting Enantioselectivity. Chemistry of Materials, 15(19), 3607-3613. doi:10.1021/cm0340734Marx, S., Zaltsman, A., Turyan, I., & Mandler, D. (2004). Parathion Sensor Based on Molecularly Imprinted Sol−Gel Films. Analytical Chemistry, 76(1), 120-126. doi:10.1021/ac034531sTurner, N. W., Jeans, C. W., Brain, K. R., Allender, C. J., Hlady, V., & Britt, D. W. (2006). From 3D to 2D: A Review of the Molecular Imprinting of Proteins. Biotechnology Progress, 22(6), 1474-1489. doi:10.1002/bp060122gXie, C., Liu, B., Wang, Z., Gao, D., Guan, G., & Zhang, Z. (2008). Molecular Imprinting at Walls of Silica Nanotubes for TNT Recognition. Analytical Chemistry, 80(2), 437-443. doi:10.1021/ac701767hTan, J., Wang, H.-F., & Yan, X.-P. (2009). Discrimination of Saccharides with a Fluorescent Molecular Imprinting Sensor Array Based on Phenylboronic Acid Functionalized Mesoporous Silica. Analytical Chemistry, 81(13), 5273-5280. doi:10.1021/ac900484xWang, H.-F., He, Y., Ji, T.-R., & Yan, X.-P. (2009). Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water. Analytical Chemistry, 81(4), 1615-1621. doi:10.1021/ac802375aJentsch, T. J., Stein, V., Weinreich, F., & Zdebik, A. A. (2002). Molecular Structure and Physiological Function of Chloride Channels. Physiological Reviews, 82(2), 503-568. doi:10.1152/physrev.00029.2001Morbach, S., & Krämer, R. (2002). Body Shaping under Water Stress: Osmosensing and Osmoregulation of Solute Transport in Bacteria. ChemBioChem, 3(5), 384. doi:10.1002/1439-7633(20020503)3:53.0.co;2-hWemmie, J. A., Price, M. P., & Welsh, M. J. (2006). Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends in Neurosciences, 29(10), 578-586. doi:10.1016/j.tins.2006.06.014Bayley, H., & Martin, C. R. (2000). Resistive-Pulse SensingFrom Microbes to Molecules. Chemical Reviews, 100(7), 2575-2594. doi:10.1021/cr980099gJung, Y., Bayley, H., & Movileanu, L. (2006). Temperature-Responsive Protein Pores. Journal of the American Chemical Society, 128(47), 15332-15340. doi:10.1021/ja065827tJenkins, A. T. A., Boden, N., Bushby, R. J., Evans, S. D., Knowles, P. F., Miles, R. E., … Vancso, G. J. (1999). Microcontact Printing of Lipophilic Self-Assembled Monolayers for the Attachment of Biomimetic Lipid Bilayers to Surfaces. Journal of the American Chemical Society, 121(22), 5274-5280. doi:10.1021/ja983968sRose, L., & Jenkins, A. T. A. (2007). The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. Bioelectrochemistry, 70(2), 387-393. doi:10.1016/j.bioelechem.2006.05.009Tsukube, H., Takagi, K., Higashiyama, T., Iwachido, T., & Hayama, N. (1994). Biomimetic Membrane Transport: Interesting Ionophore Functions of Naturally Occurring Polyether Antibiotics toward Unusual Metal Cations and Amino Acid Ester Salts. Inorganic Chemistry, 33(13), 2984-2987. doi:10.1021/ic00091a043Murillo, O., Suzuki, I., Abel, E., Murray, C. L., Meadows, E. S., Jin, T., & Gokel, G. W. (1997). Synthetic Transmembrane Channels:  Functional Characterization Using Solubility Calculations, Transport Studies, and Substituent Effects. Journal of the American Chemical Society, 119(24), 5540-5549. doi:10.1021/ja962694aSakai, N., Brennan, K. C., Weiss, L. A., & Matile, S. (1997). Toward Biomimetic Ion Channels Formed by Rigid-Rod Molecules:  Length-Dependent Ion-Transport Activity of Substituted Oligo(p-Phenylene)s. Journal of the American Chemical Society, 119(37), 8726-8727. doi:10.1021/ja971513hRoks, M. F. M., & Nolte, R. J. M. (1992). Biomimetic macromolecular chemistry: design and synthesis of an artificial ion channel based on a polymer containing cofacially stacked crown ether rings. Incorporation in dihexadecyl phosphate vesicles and study of cobalt ion transport. Macromolecules, 25(20), 5398-5407. doi:10.1021/ma00046a042Finn, J. T., Grunwald, M. E., & Yau, K.-W. (1996). Cyclic Nucleotide-Gated Ion Channels: An Extended Family With Diverse Functions. Annual Review of Physiology, 58(1), 395-426. doi:10.1146/annurev.ph.58.030196.002143Levitan, I. B. (2006). Signaling protein complexes associated with neuronal ion channels. Nature Neuroscience, 9(3), 305-310. doi:10.1038/nn1647Goldenberg, L. M., Bryce, M. R., & Petty, M. C. (1999). Chemosensor devices: voltammetric molecular recognition at solid interfaces. Journal of Materials Chemistry, 9(9), 1957-1974. doi:10.1039/a901825eBühlmann, P., Aoki, H., Xiao, K. P., Amemiya, S., Tohda, K., & Umezawa, Y. (1998). Chemical Sensing with Chemically Modified Electrodes that Mimic Gating at Biomembranes Incorporating Ion-Channel Receptors. Electroanalysis, 10(17), 1149-1158. doi:10.1002/(sici)1521-4109(199811)10:173.0.co;2-nSugawara, M., Hirano, A., Bühlmann, P., & Umezawa, Y. (2002). Design and Application of Ion-Channel Sensors Based on Biological and Artificial Receptors. Bulletin of the Chemical Society of Japan, 75(2), 187-201. doi:10.1246/bcsj.75.187Gadzekpo, V. P. Y., Xiao, K. P., Aoki, H., Bühlmann, P., & Umezawa, Y. (1999). Voltammetric Detection of the Polycation Protamine by the Use of Electrodes Modified with Self-Assembled Monolayers of Thioctic Acid. Analytical Chemistry, 71(22), 5109-5115. doi:10.1021/ac990580mGadzekpo, V. P. Y., Bühlmann, P., Xiao, K. P., Aoki, H., & Umezawa, Y. (2000). Development of an ion-channel sensor for heparin detection. Analytica Chimica Acta, 411(1-2), 163-173. doi:10.1016/s0003-2670(00)00740-6Bandyopadhyay, K., Liu, H., Liu, S.-G., & Echegoyen, L. (2000). Self-assembled monolayers of bis-thioctic ester derivatives of oligoethyleneglycols: remarkable selectivity for K+/Na+ recognition. Chemical Communications, (2), 141-142. doi:10.1039/a905839gFlink, S., Schönherr, H., Vancso, G. J., Geurts, F. A. J., van Leerdam, K. G. C., van Veggel, F. C. J. M., & Reinhoudt, D. N. (2000). Cation sensing by patterned self-assembled monolayers on gold. Journal of the Chemical Society, Perkin Transactions 2, (10), 2141-2146. doi:10.1039/b002606iAOKI, H., UMEZAWA, Y., VERTOVA, A., & RONDININI, S. (2006). Ion-channel Sensors Based on ETH 1001 Ionophore Embedded in Charged-alkanethiol Self-assembled Monolayers on Gold Electrode Surfaces. Analytical Sciences, 22(12), 1581-1584. doi:10.2116/analsci.22.1581Aoki, H., Hasegawa, K., Tohda, K., & Umezawa, Y. (2003). Voltammetric detection of inorganic phosphate using ion-channel sensing with self-assembled monolayers of a hydrogen bond-forming receptor. Biosensors and Bioelectronics, 18(2-3), 261-267. doi:10.1016/s0956-5663(02)00177-xAoki, H., & Umezawa, Y. (2003). Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. The Analyst, 128(6), 681. doi:10.1039/b300465aKatayama, Y., Ohuchi, Y., Higashi, H., Kudo, Y., & Maeda, M. (2000). The Design of Cyclic AMP−Recognizing Oligopeptides and Evaluation of Its Capability for Cyclic AMP Recognition Using an Electrochemical System. Analytical Chemistry, 72(19), 4671-4674. doi:10.1021/ac990847hCliment, E., Casasús, R., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2008). Chromo-fluorogenic sensing of pyrophosphate in aqueous media using silica functionalised with binding and reactive units. Chemical Communications, (48), 6531. doi:10.1039/b813199fCliment, E., Calero, P., Marcos, M. D., Martínez-Máñez, R.

    Determination of the chemical warfare agents Sarin, Soman and Tabun in natural waters employing fluorescent hybrid silica materials

    Full text link
    [EN] A novel mesoporous silica material containing boron-dipyrromethene (BODIPY) moieties (I) is employed for the detection of nerve agent simulants (NASs) and the organophosphate nerve or chemical warfare agents (CWAs) Sarin (GB), Soman (GD), and Tabun (GA) in aqueous environments. The reactive BODIPY dye with an optimum positioned hydroxyl group undergoes acylation reactions with phosph(on)ate substrates, yielding a bicyclic ring. Due to aggregation of the dyes in water, the sensitivity of the free dye in solution is very low. Only after immobilization of the BODIPY moieties into the silica substrates is aggregation inhibited and a sensitive determination of the NASs diethyl cyanophosphonate (DCNP), diethyl chlorophosphate (DCP) and diisopropyl fluorophosphate (DFP) possible. The signaling mode is a strong quenching of the fluorescence, reaching LODs in the pM range. The best performing hybrid material was singled out from a library of hybrid silicas varying in morphology and surface functionalization. The response to actual CWAs such as GB, GD, and GA has also been tested, offering similar behavior as for the simulants. The proposed reaction mechanism has been verified by investigation of other model materials, containing for instance BODIPY moieties without an optimum hydroxyl group (III) or a BODIPY dye with an all-aliphatic counterpart (IV). The latter can only form a monocyclic reaction product, showing much less reactivity as I. Assays with other possible competitors have been additionally carried out, showing favorably low cross-reactivities. Finally, the determination of NASs in several natural waters has been demonstrated. (C) 2017 Elsevier B.V. All rights reserved.Financial support from the Alexander von Humboldt Foundation, Germany's Federal Ministry for Economic Affairs and Energy, the Generalitat Valenciana (Project PROMETEOII/2014/047), the Spanish Government and European FEDER funds (Project MAT2015-64139-C4) is gratefully acknowledged. We thank S. Selve (Technical University Berlin) for TEM images, A. Zehl (Humboldt University Berlin) for elemental analysis, D. Pfeifer and C. Jager (BAM, Div. 1.3) for NMR support, A. Zimathies (BAM, Div. 1.3) for N2 adsorption/desorption measurements and T. Fischer (BAM, Div. 1.9) for support with the fluorescence decay measurements.Climent, E.; Biyikal, M.; Gawlitza, K.; Dropa, T.; Urban, M.; Costero, AM.; Martínez-Máñez, R.... (2017). Determination of the chemical warfare agents Sarin, Soman and Tabun in natural waters employing fluorescent hybrid silica materials. Sensors and Actuators B Chemical. 246:1056-1065. https://doi.org/10.1016/j.snb.2017.02.115S1056106524

    A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials

    Full text link
    Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the mu g m(-3) range in a few seconds.Financial support from the Alexander von Humboldt Foundation, the German Federal Ministry for Economic Affairs and Energy, European FEDER funds (MAT2012-38429-C04), the Generalitat Valenciana (PROMETEOII/2014/047), and the Spanish Government is gratefully acknowledged. We thank S. Selve (Technical University Berlin) for TEM images, A. Zehl (Humboldt University Berlin) for elemental analysis, D. Pfeifer (BAM, Div. 1.3) for NMR, A. Zimathies (BAM 1.3) for N2 adsorption/desorption, S. Ewald and A. Lehmann (BAM 1.5 & 1.8) for MS support, and T. Fischer (BAM 1.9) for support with the fluorescence decay measurements.Climent Terol, E.; Biyikal, M.; Gawlitza, K.; Dropa, T.; Urban, M.; Costero Nieto, AM.; Martínez-Máñez, R.... (2016). A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials. Chemistry - A European Journal. 22(32):11138-11142. https://doi.org/10.1002/chem.201601269S1113811142223

    Nanoscopic optical sensors based on functional supramolecular hybrid materials

    Full text link
    [EN] This review highlights how the combination of supramolecular principles and nanoscopic solid structures enables the design of new hybrid sensing ensembles with improved sensitivity and/or selectivity and for the targeting of analytes for which selectivity is hard to achieve by conventional methods. Such ideas are bridging the gap between molecules, materials sciences and nanotechnology. Relevant examples will be detailed, taking into account functional aspects such as (1) enhanced coordination of functionalized solids, (2) enhanced signalling through preorganization, (3) signalling by assembly-disassembly of nanoscopic objects, (4) biomimetic probes utilizing discrimination by polarity and size and (5) distinct switching and gating protocols. These strategies are opening new prospects for sensor research and signalling paradigms at the frontier between nanotechnology, smart materials and supramolecular chemistry. © 2010 Springer-Verlag.Financial support from the Ministerio de Ciencia y Tecnologia (project MAT2009-14564-C04), the Generalitat Valencia (project PROMETEO/2009/016) and the Innovationsfonds (BAM/Bundesministerium fur Wirtschaft und Technologie) is gratefully acknowledged.Martínez Mañez, R.; Sancenón Galarza, F.; Hecht, M.; Biyikal, M.; Rurack, K. (2011). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry. 399:55-74. https://doi.org/10.1007/s00216-010-4198-2S5574399Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, WeinheimSteed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, HobokenRurack K, Martínez-Máñez R (eds) (2010) The supramolecular chemistry of organic-inorganic hybrid materials. Wiley, HobokenArduini A, Demuru D, Pochini A, Secchi A (2005) Chem Commun 645Tshikhudo TR, Demuru D, Wang Z, Brust M, Secchi A, Arduini A, Pochini A (2005) Angew Chem Int Ed 44:2913Beer PD, Cormode DP, Davis JJ (2004) Chem Commun 414Cormode DP, Davis JJ, Beer PD (2008) J Inorg Organomet Polym 18:32Descalzo AB, Jiménez D, Marcos MD, Martínez-Máñez R, Soto J, El Haskouri J, Guillem C, Beltrán D, Amorós P, Borrachero MV (2002) Adv Mater 14:966Descalzo AB, Marcos MD, Martínez-Máñez R, Soto J, Beltrán D, Amorós P (2005) J Mater Chem 15:2721Walcarius A, Mercier L (2010) J Mater Chem 20:4478Antochshuk V, Olkhovyk O, Jaroniec M, Park IS, Ryoo R (2003) Langmuir 19:3031Kim Y, Lee B, Yi J (2004) Sep Sci Technol 39:1427Olkhovyk O, Jaroniec M (2005) Adsorption 11:685Lee SJ, Bae DR, Han WS, Lee SS, Jung JH (2008) Eur J Inorg Chem 1559Lee HY, Bae DR, Park JC, Song H, Han WS, Jung JH (2009) Angew Chem Int Ed 48:1239Ros-Lis JV, Casasús R, Comes M, Coll C, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P, El Haskouri J, Garró N, Rurack K (2008) Chem Eur J 14:8267El-Safty SA (2009) J Mater Sci 44:6764Wang C, Tao S, Wei W, Meng C, Liu F, Han M (2010) J Mater Chem 20:4635Lee MH, Lee SJ, Jung JH, Lim H, Kim JS (2007) Tetrahedron 63:12087Métivier R, Leray I, Lebeau B, Valeur B (2005) J Mater Chem 15:2965Lee SJ, Lee JE, Seo J, Jeong IY, Lee SS, Jung JH (2007) Adv Funct Mater 17:3441El-Safty SA, Prabhakaran D, Yoshimichi Y, Mizukami F (2008) Adv Funct Mater 18:1739Gao L, Wang JQ, Huang L, Fan XX, Zhu JH, Wang Y, Zou ZG (2007) Inorg Chem 46:10287Zhang H, Zhang P, Ye K, Sun Y, Jiang S, Wang Y, Pang W (2006) J Lumin 117:68Li L-L, Sun H, Fang C-J, Xu J, Jin J-Y, Yan C-H (2007) J Mater Chem 17:4492Wang J-Q, Huang L, Xue M, Wang Y, Gao L, Zhu JH, Zou Z (2008) J Phys Chem C 112:5014Gao L, Wang Y, Wang J, Huang L, Shi L, Fan X, Zou Z, Yu T, Zhu M, Li Z (2006) Inorg Chem 45:6844Balaji T, Sasidharan M, Matsunaga H (2006) Anal Bioanal Chem 384:488Balaji T, El-Safty SA, Matsunaga H, Hanaoka T, Mizukami F (2006) Angew Chem Int Ed 45:7202El-Safty SA, Ismail AA, Matsunaga H, Mizukami F (2007) Chem Eur J 13:9245El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F (2007) Adv Funct Mater 17:3731El-Safty SA, Ismail AA, Matsunaga H, Nanjo H, Mizukami F (2008) J Phys Chem C 112:4825El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F (2008) Chem Mater 20:2644El-Safty SA, Ismail AA, Matsunaga H, Hanaoka T, Mizukami F (2008) Adv Funct Mater 18:1485Wirnsberger G, Scott BJ, Stucky GD (2001) Chem Commun 119Comes M, Rodríguez-López G, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P, Beltrán D (2005) Angew Chem Int Ed 44:2918Comes M, Aznar E, Moragues M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Gil L, Amorós P (2009) Chem Eur J 15:9024Comes M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P (2008) Chem Commun 3639Wada A, Tamaru S, Ikeda M, Hamachi I (2009) J Am Chem Soc 131:5321Montalti M, Prodi L, Zaccheroni N, Falini G (2002) J Am Chem Soc 124:13540Montalti M, Prodi L, Zaccheroni N (2005) J Mater Chem 15:2810Ding L, Cui X, Han Y, Lu F, Fang Y (2007) J Photochem Photobiol A 186:143Teolato P, Rampazzo E, Arduini M, Mancin F, Tecilla P, Tonellato U (2007) Chem Eur J 13:2238Bonacchi S, Rampazzo E, Montalti M, Prodi L, Zaccheroni N, Mancin F, Teolato P (2008) Langmuir 24:8387Zheng J, Xiao C, Fei Q, Li M, Wang B, Feng G, Yu H, Huan Y, Song Z (2010) Nanotechnology 21:045501Brasola E, Mancin F, Rampazzo E, Tecilla P, Tonellato U (2003) Chem Commun 3026Rampazzo E, Brasola E, Marcuz S, Mancin F, Tecilla P, Tonellato U (2005) J Mater Chem 15:2687Arduini M, Mancin F, Tecilla P, Tonellato U (2007) Langmuir 23:8632Gao D, Wang Z, Liu B, Ni L, Wu M, Zhang Z (2008) Anal Chem 80:8545Arduini M, Marcuz S, Montolli M, Rampazzo E, Mancin F, Gross S, Armelao L, Tecilla P, Tonellato U (2005) Langmuir 21:9314Montalti M, Prodi L, Zaccheroni N, Battistini G, Marcuz S, Mancin F, Rampazzo E, Tonellato U (2006) Langmuir 22:5877Méallet-Renault R, Pansu R, Amigoni-Gerbier S, Larpent C (2004) Chem Commun 2344Gouanvé F, Schuster T, Allard E, Méallet-Renault R, Larpent C (2007) Adv Funct Mater 17:2746Doyle EL, Hunter CA, Philips HC, Webb SJ, Williams NH (2003) J Am Chem Soc 125:4593Lee SJ, Lee SS, Lah MS, Hong J-M, Jung JH (2006) Chem Commun 4539Mu L, Shi W, Chang JC, Lee S-T (2008) Nano Lett 8:104Crego-Calama M, Reinhoudt DN (2001) Adv Mater 13:1171Basabe-Desmonts L, Beld J, Zimmerman RS, Hernando J, Mela P, García Parajó MF, van Hulst NF, van den Berg A, Reinhoudt DN, Crego-Calama M (2004) J Am Chem Soc 126:7293Zimmerman R, Basabe-Desmonts L, van der Baan F, Reinhoudt DN, Crego-Calama M (2005) J Mater Chem 15:2772Zanarini S, Rampazzo E, Della Ciana L, Marcaccio M, Marzocchi E, Montalti M, Paolucci F, Prodi L (2009) J Am Chem Soc 131:2260Daniel M-C, Astruc D (2004) Chem Rev 104:293Kreibig U, Vollmer M (1998) Optical properties of metal clusters. Springer, BerlinWang Z, Ma L (2009) Coord Chem Rev 253:1607Ma L-N, Liu D-J, Wang Z-X (2010) Chin J Anal Chem 38:1Rosi NL, Mirkin CA (2005) Chem Rev 105:1547Katz E, Willner I (2004) Angew Chem Int Ed 43:6042Lin SY, Wu SH, Chen CH (2006) Angew Chem Int Ed 45:4948Liu J, Lu Y (2005) J Am Chem Soc 127:12677Wang Z, Lee JH, Lu Y (2008) Adv Mater 20:3263Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) J Phys Chem C 111:12839Huang K-W, Yu C-J, Tseng W-L (2010) Biosens Bioelectron 25:984Lin S-Y, Liu S-W, Lin C-M, Chen C-H (2002) Anal Chem 74:330Lin S-Y, Chen CH, Lin CM, Hsu HF (2005) Anal Chem 77:4821Huang C-C, Chang H-T (2007) Chem Commun 1215Fan Y, Long YF, Li YF (2009) Anal Chim Acta 653:207Tan Z-Q, Liu J-F (2010) Anal Chem 82:4222Wang H, Wang Y, Jin J, Yang R (2008) Anal Chem 80:9021Xu X, Wang J, Jiao K, Yang X (2009) Biosens Bioelectron 24:3153Liu ZD, Li YF, Ling J, Huang CZ (2009) Environ Sci Technol 43:5022Chen W, Tu X, Guo X (2009) Chem Commun 1736Li B, Du Y, Dong S (2009) Anal Chim Acta 644:78Han C, Zhang L, Li H (2009) Chem Commun 3545Wu T, Liu C, Tan KJ, Hu PP, Huang CZ (2010) Anal Bioanal Chem 397:1273Chen S-J, Chang H-T (2004) Anal Chem 76:3727Chen Z, Luo S, Liu C, Cai Q (2009) Anal Bional Chem 395:489Wang Y, Wang J, Yang F, Yang X (2010) Anal Sci 26:545Chen Z, He Y, Luo S, Lin H, Chen Y, Sheng P, Li J, Chen B, Liu C, Cai Q (2010) Analyst 135:1066Patel G, Menon S (2009) Chem Commun 3563Pavlov V, Xiao Y, Willner I (2005) Nano Lett 5:649Zhang Y, Li B, Chen X (2010) Microchim Acta 168:107Han C, Zeng L, Li H, Xie G (2009) Sens Actuators B 137:704Chi H, Liu B, Guan G, Zhang Z, Han M-Y (2010) Analyst 135:1070Lu C, Zhang N, Li J, Li Q (2010) Talanta 81:698–702Watanabe S, Sonobe M, Arai M, Tazume Y, Matsuo T, Nakamura T, Yoshida K (2002) Chem Commun 2866Daniel WL, Han MS, Lee J-S, Mirkin CA (2009) J Am Chem Soc 131:6362Kubo Y, Uchida S, Kemmochi Y, Okubo T (2005) Tetrahedron Lett 46:4369Kado S, Furui A, Akiyama Y, Nakahara Y, Kimura K (2009) Anal Sci 25:261Kumar A, Chhatra RK, Pandey PS (2010) Org Lett 12:24Stangl J, Holý V, Bauer G (2004) Rev Mod Phys 76:725Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025Rogach AL, Eychmüller A, Hickey SG, Kershaw SV (2007) Small 3:536Han C, Li H (2010) Anal Bioanal Chem 397:1437Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006) Trends Anal Chem 25:207Costa-Fernandez JM (2006) Anal Bioanal Chem 384:37Willard DM, Mutschler T, Yu M, Jung J, Orden AV (2006) Anal Bioanal Chem 384:564Callan JF, de Silva AP, Mulrooney RC, Mc Caughan B (2007) J Inclusion Phenom Mol Recognit Chem 58:257Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435Zhong Y, Kaji N, Tokeshi M, Baba Y (2007) Expert Rev Proteomics 4:565Li ZB, Cai W, Chen X (2007) J Nanosci Nanotechnol 7:2567Chen Y, Rosenzweig Z (2002) Anal Chem 74:5132Konishi K, Hiratani T (2006) Angew Chem Int Ed 45:5191Zhang L, Xu C, Li B (2009) Microchim Acta 166:61Liang J-G, Ai X-P, He Z-K, Pang D-W (2004) Analyst 129:619Lai Y, Yu Y, Zhong P, Wu J, Long Z, Liang C (2006) Anal Lett 39:1201Lai S, Chang X, Fu C (2009) Microchim Acta 165:39Chan Y-H, Chen J, Liu Q, Wark SE, Son DH, Batteas JD (2010) Anal Chem 82:3671Bo C, Ping Z (2005) Anal Bioanal Chem 381:986Tang B, Niu J, Yu C, Zhuo L, Ge J (2005) Chem Commun 4184Chen C-Y, Chen C-T, Lai C-W, Wu P-W, Wu K-C, Chou P-T, Chou Y-H, Chiu H-T (2006) Chem Commun 263Ruedas-Rama MJ, Hall EAH (2008) Anal Chem 80:8260Ge S, Zhang C, Zhu Y, Yu J, Zhang S (2010) Analyst 135:111Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2004) Anal Chim Acta 552:1Jin WJ, Fernández-Argüelles T, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2005) Chem Commun 883Lakowicz JR, Gryczynski I, Gryczynski Z, Murthy CJ (1999) J Phys Chem B 103:7613Li H, Han C, Zhang L (2008) J Mater Chem 18:4543Zhang B-H, Wu F-Y, Wu Y-M (2010) J Fluoresc 20:243Mulrooney RC, Singh N, Kaur N, Callan JF (2009) Chem Commun 686Cordes DB, Gamsey S, Singaram B (2006) Angew Chem Int Ed 45:3829Jin T, Fujii F, Sakata H, Tamura M, Kinjo M (2005) Chem Commun 4300Yan XQ, Shang ZB, Zhang Z, Wang Y, Jin WJ (2009) Luminescence 24:255Kuang R, Kuang X, Pan S, Zheng X, Duan J, Duan Y (2010) Microchim Acta 169:109Lin VS-Y, Lai C-Y, Huang J, Song S-A, Xu S (2001) J Am Chem Soc 123:11510Radu DR, Lai C-Y, Wiench JW, Pruski M, Lin VS-Y (2004) J Am Chem Soc 126:1640Descalzo AB, Rurack K, Weisshoff H, Martínez-Máñez R, Marcos MD, Amorós P, Hoffmann K, Soto J (2005) J Am Chem Soc 127:184Comes M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P, Beltrán D (2004) Adv Mater 16:1783Basurto S, Torroba T, Comes M, Martínez-Máñez R, Sancenón F, Villaescusa LA, Amorós P (2005) Org Lett 7:5469García-Acosta B, Comes M, Bricks JL, Kudinova MA, Kurdyukov VV, Tolmachev AI, Descalzo AB, Marcos MD, Martínez-Máñez R, Moreno A, Sancenón F, Soto J, Villaescusa LA, Rurack K, Barat JM, Escriche I, Amorós P (2006) Chem Commun 2239Comes M, Marcos MD, Martínez-Máñez R, Millán MC, Ros-Lis JV, Sancenón F, Soto J, Villaescusa LA (2006) Chem Eur J 12:2162Descalzo AB, Marcos MD, Monte C, Martínez-Máñez R, Rurack K (2007) J Mater Chem 17:4716Meinershagen JL, Bein TJ (1999) J Am Chem Soc 121:448Dickinson TA, White J, Kauer JS, Walt DR (1996) Nature 382:697Dickinson TA, Michael KL, Kauer JS, Walt DR (1999) Anal Chem 71:2192Tao S, Li G (2007) Colloid Polym Sci 285:721Bühlmann P, Aoki H, Xiao KP, Amemiya S, Tohda K, Umezawa Y (1998) Electroanalysis 10:1149Sugawara M, Hirano A, Bühlmann P, Umezawa Y (2002) Bull Chem Soc Jpn 75:187Umezawa Y, Aoki H (2004) Anal Chem 76:320ACliment E, Casasús R, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J (2008) Chem Commun 6531Climent E, Casasús R, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J (2009) Dalton Trans 4806Climent E, Calero P, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J (2009) Chem Eur J 15:1816Climent E, Martí A, Royo S, Martínez-Máñez R, Marcos MD, Sancenón F, Soto J, Costero AM, Gil S, Parra M (2010) Angew Chem Int Ed (in press)Dubach JM, Harjes DI, Clark HA (2007) J Am Chem Soc 129:8418Climent E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Rurack K, Amorós P (2009) Angew Chem Int Ed 48:8519Casasús R, Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P (2006) Angew Chem Int Ed 45:6661Coll C, Casasús R, Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P (2007) Chem Commun 1957Aznar E, Coll C, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P, Cano J, Ruiz E (2009) Chem Eur J 15:6877Climent E, Bernardos A, Martínez-Máñez R, Maquieira A, Marcos MD, Pastor-Navarro N, Puchades R, Sancenón F, Soto J, Amorós P (2009) J Am Chem Soc 131:14075Suzuki D, Kawaguchi H (2006) Langmuir 22:3818Lee J, Kotov NA (2007) Nano Today 2:48Lee J, Govorov AO, Kotov NA (2005) Angew Chem Int Ed 44:7439Peng H, Stich MIJ, Yu J, Sun L-N, Fischer LH, Wolfbeis OS (2010) Adv Mater 22:716Laocharoensuk R, Bulbarello A, Hocevar SB, Mannino S, Ogorevc B, Wang J (2007) J Am Chem Soc 129:7774Stitzel S, Byrne R, Diamond D (2006) J Mater Sci 41:5841Radu A, Scarmagnani S, Byrne R, Slater C, Lau KT, Diamond D (2007) J Phys D Appl Phys 40:7238Thanh NTK, Rosenzweig Z (2002) Anal Chem 74:1624Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) Anal Chem 75:2377Fryxell GE, Liu J, Mattigod S (1999) Mater Technol 14:188Wang X, Boschetti C, Ruedas-Rama MJ, Tunnacliffe A, Hall EAH (2010) Analyst 135:1585Freeman R, Willner I (2009) Nano Lett 9:322Collinson MM (2010) In: Rurack K, Martínez-Máñez R (eds) The supramolecular chemistry of organic-inorganic hybrid materials. Hoboken, WileyZhu S, Fischer T, Wan W, Descalzo AB, Rurack K (2010) Top Curr Chem (in press
    corecore